extension | φ:Q→Aut N | d | ρ | Label | ID |
C23.1(C2×C8) = C23.2M4(2) | φ: C2×C8/C4 → C4 ⊆ Aut C23 | 32 | | C2^3.1(C2xC8) | 128,58 |
C23.2(C2×C8) = C22⋊C4.C8 | φ: C2×C8/C4 → C4 ⊆ Aut C23 | 32 | 4 | C2^3.2(C2xC8) | 128,60 |
C23.3(C2×C8) = C42.393D4 | φ: C2×C8/C4 → C4 ⊆ Aut C23 | 32 | | C2^3.3(C2xC8) | 128,192 |
C23.4(C2×C8) = M5(2).19C22 | φ: C2×C8/C4 → C4 ⊆ Aut C23 | 32 | 4 | C2^3.4(C2xC8) | 128,847 |
C23.5(C2×C8) = C23.21C42 | φ: C2×C8/C4 → C22 ⊆ Aut C23 | 32 | | C2^3.5(C2xC8) | 128,14 |
C23.6(C2×C8) = M4(2).C8 | φ: C2×C8/C4 → C22 ⊆ Aut C23 | 32 | 4 | C2^3.6(C2xC8) | 128,110 |
C23.7(C2×C8) = C22⋊C4⋊4C8 | φ: C2×C8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.7(C2xC8) | 128,655 |
C23.8(C2×C8) = C42.325D4 | φ: C2×C8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.8(C2xC8) | 128,686 |
C23.9(C2×C8) = (C2×D4).5C8 | φ: C2×C8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.9(C2xC8) | 128,845 |
C23.10(C2×C8) = C8.12M4(2) | φ: C2×C8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.10(C2xC8) | 128,896 |
C23.11(C2×C8) = C16⋊6D4 | φ: C2×C8/C4 → C22 ⊆ Aut C23 | 64 | | C2^3.11(C2xC8) | 128,901 |
C23.12(C2×C8) = Q8○M5(2) | φ: C2×C8/C4 → C22 ⊆ Aut C23 | 32 | 4 | C2^3.12(C2xC8) | 128,2139 |
C23.13(C2×C8) = C24⋊C8 | φ: C2×C8/C22 → C4 ⊆ Aut C23 | 16 | | C2^3.13(C2xC8) | 128,48 |
C23.14(C2×C8) = C23.15M4(2) | φ: C2×C8/C22 → C4 ⊆ Aut C23 | 32 | | C2^3.14(C2xC8) | 128,49 |
C23.15(C2×C8) = C24.C8 | φ: C2×C8/C22 → C4 ⊆ Aut C23 | 16 | 4 | C2^3.15(C2xC8) | 128,52 |
C23.16(C2×C8) = C42.371D4 | φ: C2×C8/C22 → C4 ⊆ Aut C23 | 32 | | C2^3.16(C2xC8) | 128,190 |
C23.17(C2×C8) = C2×C23.C8 | φ: C2×C8/C22 → C4 ⊆ Aut C23 | 32 | | C2^3.17(C2xC8) | 128,846 |
C23.18(C2×C8) = C8×C22⋊C4 | φ: C2×C8/C8 → C2 ⊆ Aut C23 | 64 | | C2^3.18(C2xC8) | 128,483 |
C23.19(C2×C8) = C23.21M4(2) | φ: C2×C8/C8 → C2 ⊆ Aut C23 | 64 | | C2^3.19(C2xC8) | 128,582 |
C23.20(C2×C8) = C16○2M5(2) | φ: C2×C8/C8 → C2 ⊆ Aut C23 | 64 | | C2^3.20(C2xC8) | 128,840 |
C23.21(C2×C8) = C4⋊C4.7C8 | φ: C2×C8/C8 → C2 ⊆ Aut C23 | 64 | | C2^3.21(C2xC8) | 128,883 |
C23.22(C2×C8) = D4×C16 | φ: C2×C8/C8 → C2 ⊆ Aut C23 | 64 | | C2^3.22(C2xC8) | 128,899 |
C23.23(C2×C8) = C16⋊9D4 | φ: C2×C8/C8 → C2 ⊆ Aut C23 | 64 | | C2^3.23(C2xC8) | 128,900 |
C23.24(C2×C8) = C2×D4○C16 | φ: C2×C8/C8 → C2 ⊆ Aut C23 | 64 | | C2^3.24(C2xC8) | 128,2138 |
C23.25(C2×C8) = C23.19C42 | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.25(C2xC8) | 128,12 |
C23.26(C2×C8) = C23⋊C16 | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 32 | | C2^3.26(C2xC8) | 128,46 |
C23.27(C2×C8) = C22.M5(2) | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.27(C2xC8) | 128,54 |
C23.28(C2×C8) = M5(2)⋊C4 | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.28(C2xC8) | 128,109 |
C23.29(C2×C8) = C2×C22.M4(2) | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.29(C2xC8) | 128,189 |
C23.30(C2×C8) = C4×C22⋊C8 | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.30(C2xC8) | 128,480 |
C23.31(C2×C8) = C24⋊3C8 | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 32 | | C2^3.31(C2xC8) | 128,511 |
C23.32(C2×C8) = C42.425D4 | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.32(C2xC8) | 128,529 |
C23.33(C2×C8) = C23.32M4(2) | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.33(C2xC8) | 128,549 |
C23.34(C2×C8) = C4×M5(2) | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.34(C2xC8) | 128,839 |
C23.35(C2×C8) = C2×C22⋊C16 | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.35(C2xC8) | 128,843 |
C23.36(C2×C8) = C24.5C8 | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 32 | | C2^3.36(C2xC8) | 128,844 |
C23.37(C2×C8) = C4⋊M5(2) | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.37(C2xC8) | 128,882 |
C23.38(C2×C8) = C42.13C8 | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.38(C2xC8) | 128,894 |
C23.39(C2×C8) = C42.6C8 | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.39(C2xC8) | 128,895 |
C23.40(C2×C8) = C2×C42.12C4 | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.40(C2xC8) | 128,1649 |
C23.41(C2×C8) = C22×M5(2) | φ: C2×C8/C2×C4 → C2 ⊆ Aut C23 | 64 | | C2^3.41(C2xC8) | 128,2137 |
C23.42(C2×C8) = C22.7M5(2) | central extension (φ=1) | 128 | | C2^3.42(C2xC8) | 128,106 |
C23.43(C2×C8) = C2×C22.7C42 | central extension (φ=1) | 128 | | C2^3.43(C2xC8) | 128,459 |
C23.44(C2×C8) = C2×C16⋊5C4 | central extension (φ=1) | 128 | | C2^3.44(C2xC8) | 128,838 |
C23.45(C2×C8) = C2×C4⋊C16 | central extension (φ=1) | 128 | | C2^3.45(C2xC8) | 128,881 |
C23.46(C2×C8) = C22×C4⋊C8 | central extension (φ=1) | 128 | | C2^3.46(C2xC8) | 128,1634 |